A New Quartet Tree Heuristic for Hierarchical Clustering
نویسندگان
چکیده
We consider the problem of constructing an an optimal-weight tree from the 3 `
منابع مشابه
A Fast Quartet tree heuristic for hierarchical clustering
The Minimum Quartet Tree Cost problem is to construct an optimal weight tree from the 3 (
متن کاملar X iv : c s / 03 12 04 4 v 1 [ cs . C V ] 1 9 D ec 2 00 3 Clustering by Compression
We present a new method for clustering based on compression. The method doesn't use subject-specific features or background knowledge, and works as follows: First, we determine a universal similarity distance, the normalized compression distance or NCD, computed from the lengths of compressed data files (singly and in pairwise concatenation). Second, we apply a hierarchical clustering method. T...
متن کاملA New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity
Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...
متن کاملFast optimal leaf ordering for hierarchical clustering
We present the first practical algorithm for the optimal linear leaf ordering of trees that are generated by hierarchical clustering. Hierarchical clustering has been extensively used to analyze gene expression data, and we show how optimal leaf ordering can reveal biological structure that is not observed with an existing heuristic ordering method. For a tree with n leaves, there are 2(n-1) li...
متن کاملQuartet-Based Learning of Hierarchical Latent Class Models: Discovery of Shallow Latent Variables
Hierarchical latent class (HLC) models are tree-structured Bayesian networks where leaf nodes are observed while internal nodes are hidden. The currently most efficient algorithm for learning HLC models can deal with only a few dozen observed variables. While this is sufficient for some applications, more efficient algorithms are needed for domains with, e.g., hundreds of observed variables. Wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0606048 شماره
صفحات -
تاریخ انتشار 2006